

Plasmonics and Optical Metamaterials: Looking beyond Gold and Silver

EXPLORING AND UTILIZING ALTERNATIVE CONSTITUENT MATERIALS

Alexandra Boltasseva

School of Electrical & Computer Engineering Birck Nanotechnology Center Purdue University

OUTLINE

- Introduction: Challenges with Gold and Silver
- Material Requirements: Plasmonics & Metamaterials
- Alternative Materials?
- Transparent Conducting Oxides
- Transition Metal Nitrides
- Figures of Merit
- What is the Right Choice?
- Outlook

METAMATERIALS/TRANSFORMATION OPTICS

Metamaterials/TO: J. Pendry, X. Zhang, D. Smith, V. Shalaev, E. Narimanov, N. Engeta, M. Wegener, C. Soukoulis and many other groups

CHALLENGES

Conventional plasmonics: Gold and Silver

• Large losses in near-IR and visible ranges

Johnson and Christy (dots) (1972)

Stefan Maier, Plasmonic Fundamentals and Applications p. 17 (Drude model fit) (2007)

MATERIAL REQUIREMENTS

Emerging innovative fields such as Transformational Optics require comparable magnitudes of ε' of metal and dielectric

Epsilon-near-zero (ENZ) materials

Effective permittivity nearly zero: e.g. optical cloaks,
 hyperlens etc.

Novel devices would require tunable ε'

> Switching and modulation capabilities

Z. Liu, et al., Science, 2007

MATERIALS FOR TO / ENZ

- $\circ~$ Effective permittivity nearly zero $\epsilon_{\rm effective}$ ~ 0: cloaks, hyperlens etc.
- Real permittivity of metals must be comparable to that of dielectrics (for example, $\varepsilon_{dielectric} \sim 2$ requires $\text{Re}(\varepsilon_{plasmonic material}) \sim -2$ while $\text{Re}(\varepsilon_{Ag}) << -2...$)

Ag: threshold for uniform continuous films is around 12-23 nm

BEYOND GOLD AND SILVER?

2-D Negative refractive index materials

U. K. Chettiar et. al, MRS Bulletin (2008)

Plasmonic nanoparticle waveguide

M.A Noginov et. al, Nature (2010)

M.L. Brongersma, et al., Phys. Rev. B (2000)

- Too large magnitude of real permittivity
- Large losses (VIS/NIR)
- Optical properties are not tunable
- Fabrication of very thin films/nanostructures is difficult
- Nanopatterning increases losses, grain boundaries, surface roughness...
- Not CMOS compatible

OUTLINE

- Introduction: Challenges with Gold and Silver
- Material Requirements: Plasmonics & Metamaterials
- Alternative Materials?
- Transparent Conducting Oxides
- Transition Metal Nitrides
- Figures of Merit
- What is the Right Choice?
- Outlook

MATERIAL REQUIREMENTS

• Low loss components

- Dielectrics can be nearly loss-less
- Metals have large losses

Adjustable / Tunable optical properties
 Some Metamaterial + TO designs require
 comparable magnitudes of ε' of metal and dielectric

- Epsilon-near-zero (ENZ) materials
- Effective permittivity nearly zero: e.g. optical cloaks, hyperlens etc.
- Switchable devices

SC-compatible components

M. Ren *et al., Adv. Mater.* 23 (2011) 5540; J.Y. Ou *et al., Nano Lett.* 11 (2011) 2142. (Zheludev's group) E. Feigenbaium *et al., Nano Lett.* 10 (2010) 2111. (Atwater's group)

OUTLINE

- Introduction: Challenges with Gold and Silver
- Material Requirements: Plasmonics & Metamaterials
- Alternative Materials?
- Transparent Conducting Oxides
- Transition Metal Nitrides
- Figures of Merit
- What is the Right Choice?
- Outlook

POSSIBILITIES

- Metals (Ag, Au, Cu, Al, Alkali)
- Alloys (Noble-Alkali¹, alloys of noble metals with transition metals like Cadmium and Zinc²)
- Doped Semiconductors: Highly doped semiconductors³, doped conducting oxides (ITO⁴, AI:ZnO and Ga:ZnO⁵)
- Intermetallics (nitrides, germanides, ...)

1:M. G. Blaber et al., J.Phys. Cond. Matter, 21, 144211 (2009), 2:D. A. Bobb et al., Appl. Phys. Lett. 95, 151102 (2009); 3:A. J .Hoffman et al., Nature Mater., 6, 946 (2007) 4:C. Rhodes et al., J. Appl. Phys., vol. 100, 54905 (2008) 5: LPR 4, 795 (2010), Phys. Status Solidi RRL 4, 295 (2010), Metamaterials 5, 1 (2011), OMEx (2011)

ALTERNATIVE MATERIALS

A. Boltasseva and H.A Atwater, Science 331 (2011) 290.

METALS

Ag – Conventional Plasmonics, usual choice

- Low loss
- Standard physical vapor deposition (PVD) methods + chemical methods
- But degrades in air

Au – Second Best for VIS, NIR

- Acceptable loss but interband transition (5d-6p) within VIS range
- Standard PVD methods + chemical methods: Chemically stable
- Continuous film at thickness of 2-7nm

Cu – Ok for VIS (similar to Au)

- High conductivity + low cost
- But prone to surface oxidation

Ag, Au, Cu

Cu – similar to Au 600-750 nm fabrication is challenging (easily oxidizes)

ALUMINUM

- Al Higher loss in VIS + NIR
- Best for short wavelengths (still plasmonic below 200 nm)
- Prone to surface *oxidation* (Al₂O₃ 2.5~3nm)

G. Chan, et al, J. Phys. Chem. C, 112, 13958 (2008) C. Langhammer, et al, Nano Letter, 8, 1461 (2008)

ALKALI

Alkali (Sodium, Potassium) – Lowest losses, closest to free-electron gas - Very *reactive* (ultra-high vacuum 10⁻¹⁹ Torr reqiurement, passivation)

Ag, Au: P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370-4379 (1972) Al, Na, K: E. D. Palik, Handbook of Optical Constants of Solids

ALLOYS: IMPROVING METALS

Improving Noble Metals:

- To shift interband transitions to another (unimportant) part of the spectrum

-By alloying two or more elements to create unique band structures that can be fine-tuned by adjusting the proportion of each alloyed material

Noble-Transition Metal Alloys

Bivalent transition metals (Cadmium and Zinc) contribute one extra electron to the free-electron plasma n-type doping \Rightarrow

- Increasing of ω_p
- Shifting the threshold for interband transitions
- Reducing the absorption at a specific wavelength

"Band Engineering"

PURDUE UNIVERSITY

NOBLE-TRANSITION ALLOY

Cadmium + Gold \Rightarrow Additional electron to free electron gas Shift of the Lorentz resonance peaks \Rightarrow Tuning of the optical parameters Optimum – 3.3% Cadmium in Gold

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, Appl. Phys. Lett. 95, 151102 (2009) - Norfolk University

ALKALI-NOBLE COMPOUNDS

Alkali-Noble Metal: Intermetallic Compounds

Group I alkali metals: Strongest free-electron-like behavior

Most promise: Potassium Gold (KAu)

OUTLINE

- Introduction: Challenges with Gold and Silver
- Material Requirements: Plasmonics & Metamaterials
- Alternative Materials?
- Transparent Conducting Oxides
- Transition Metal Nitrides
- Figures of Merit
- What is the Right Choice?
- Outlook

SEMICONDUCTORS AS "METALS"

- Metals: Too large carrier concentration
 - Large plasma frequency (ω_P)
 - $\circ~\omega_P \alpha~ vn$: n ~ 10^{22} cm 3 in metals
 - Large loss ($\epsilon'' \alpha \omega_p^2$) + large magnitude of ϵ'
- Semiconductors: **Doping** can control carrier concentration
 - Conventional semiconductors: too low carrier concentration (dielectrics)
 - Doping density of 10^{21} cm⁻³ could produce $\epsilon' < 0$ in NIR

MAKE SCs MORE METALLIC...

METALS AS "LESS-METALS"

- Lower carrier concentration in metals
 - Abstract electrons by non-metal inclusions
 - Non-stoichiometric: controllable properties

METALS ARE TOO METALLIC...

SEMICONDUCTOR-BASED "METALS"

- Make semiconductors more metallic: Increase carrier concentration to 10²¹ cm⁻³
- Wide Bandgap Semiconductors: *Negligible interband transition losses*
- Bandgap should be larger than frequency of interest
 Material Bandgap (eV):
 Si - 1.12, GaAs - 1.42, SiC - 2.36-3.05
- Large carrier mobility: Low damping losses

SEMICONDUCTORS

Semiconductors

- A lot of potential candidates like GaAs, GaN, Zn and Cd compounds (Oxides, Sulphides, Selenides, Tellurides), In₂O₃, SnO₂, SiC, etc.
- Bandgap should be larger than frequency of interest (Material Bandgap (eV): Si - 1.12, GaAs - 1.42, SiC - 2.36-3.05)
- Negative ε at IR: heavy doping or resonance (Hoffmann et. al: Alternating layers of InGaAs and InAlAs; Doping 7x10¹⁸ cm⁻³ to achieve negative epsilon at ~ 10 μ m)

• Transparent Conducting Oxides

- Tune plasma frequency by doping
- Great switching opportunities
- Indium Tin Oxide (ITO), Al doped Zinc Oxide (AZO)

and Ga doped Zinc Oxide (GZO)

Solieman et al., Thin Solid Films, 502, 205 (2006)

SEMICONDUCTORS AS "METALS"

NIR: Transparent Conducting Oxides

- Tune plasma frequency by doping
- Great switching opportunities
- Gallium doped zinc oxide (GZO)
- Aluminum doped zinc oxide (AZO)
- Tin doped indium oxide (ITO)

C. Rhodes, et al., J. Appl. Phys. 100, 054905 (2006); P. R West et al., Laser & Photonics Reviews (2010); M.A. Noginov et al., Appl. Phys. Lett. 99 (2011) 021101. E. Feigenbaium et al., Nano Lett. 10 (2010) 2111. (Atwater's group)

ZINC OXIDE

- II-VI semiconductor
- Wide band-gap of 3.37 eV at 300 K
- Applications:
 - Display panels
 - Piezo-electric devices
 - Paints, anti-corrosive coatings
 - Bio-compatible devices

DOPING ZnO

 By substituting a fraction of the Zn²⁺ ions by Al³⁺ ions, which serve as electron donors, ZnO is turned into a n-type semiconductor

Ultra-High Doping Challenges

- Solid solubilities (maximum concentrations) of Ga and Al in ZnO are high (2-4 wt%)¹
- High carrier concentration¹ ~ 10²¹ cm⁻³ (close to solid solubility limit)
- Very heavy doping lowers mobility of carriers due to increased impurity scattering
- Properties depend largely on the deposition method and the deposition conditions

PULSED LASER DEPOSITION (PLD)

- Pulsed LASER Deposition (PLD)
 - Excimer laser pulses ablate the target of desired material
 - Ablation of more than one targets can deposit material with mixed composition
- Optical Characterization: Ellipsometry
 - Spectroscopic ellipsometer (J.A. Woollam Co.)
 - Drude-Lorentz model to extract the dielectric function

AFM OF AZO FILMS

Mean grain size: 8 nm; Roughness (rms): 1.3 nm; Thickness 62 nm

AZO THIN FILMS

OPTICAL PROPERTIES

OPTICAL PROPERTIES

AZO films on c-sapphire substrates: Al doping 3.0 wt%

One of the films deposited at 150 °C was subjected to forming gas anneal at 300 °C for 2 h.

ZnO DOPING

- Larger doping does not necessarily mean larger cross-over frequency
- Trend shows that lower temperature deposition can produce larger cross-over frequency with larger doping

PLD AZO – lowest cross-over wavelength 1720 nm on this slide

THICKNESS-DEPENDENT PROPERTIES

- ° GZO films deposited on glass under identical condition except film thickness
- Understanding thickness-dependent properties is essential for device fabrication

OPTICAL PROPERTIES: TCOs

- TCOs films deposited on glass substrate
- AZO: Lowest Drude damping, Longest cross-over wavelength
- $^{\rm o}$ GZO, ITO: Cross-over wavelength as low as 1.2 μm
- Drude damping in GZO is slightly higher than that in AZO and lower than that in ITO

G.V. Naik, J. Kim and A. Boltasseva, Optical Mater. Exp. 1 (2011) 1090

TCOs COMPARED TO GOLD/SILVER

SPPs ON GZO FILMS at 1.55um

- GZO is deposited onto glass prism.
- E_{GZO} =-2.12+1.2i (at 1.55um)
- Angular reflectance shows dip at angles corresponding to excitation of SPPs

G.V. Naik, J. Kim and A. Boltasseva, Optical Mater. Exp. 1 (2011) 1090

NEXT STEP: PATTERNING

Removing residual ZEP 520A and cleaning a surface with oxygen plasma

TCO LSPR STRUCTURES FABRICATION

5.00um

500nm

300nm

P: 700nm, S: 400nm

68

.

S4800 5.0kV x11.0k SE(M)

TCO LSPR STRUCTURES

ATOMIC-LAYER-DEPOSITION OF AZO

- Diethyl zinc and oxygen as precursors to deposit ZnO
- Al or Ti dopants are introduced during deposition
- Smallest cross-over wavelength: 1.6 μm
- Drude-damping loss ≈ 0.2 eV
- Smooth films: rms roughness ~ 0.59 nm

conformal on woodpile polymer photonic crystal

OUTLINE

- Introduction: Challenges with Gold and Silver
- Material Requirements: Plasmonics & Metamaterials
- Alternative Materials?
- Transparent Conducting Oxides
- Transition Metal Nitrides
- Figures of Merit
- What is the Right Choice?
- Outlook

METALS TO 'LESS-METALS'

• Reduce carrier concentration: Mixing them with non-metals \Rightarrow

Intermetallics

Ceramics

- Silicides
- Germanides
- Borides
- Nitrides
- Oxides
- Metallic alloys

TITANIUM NITRIDE

- Metallic: Golden luster
- Hard & tough: high speed drill-bits
- Deposition: CVD, sputtering, evaporation...

CMOS COMPATIBLE

TITANIUM NITRIDE

TITANIUM NITRIDE: OPTIMIZATION

Ultra-thin and smooth films; epitaxial growth

TITANIUM NITRIDE

- TiN films deposited at 300°C and 500°C (left)
- TiN films deposited on different substrates (right)
- The films were deposited with the flow ratio of Ar and N set to 4:6

OTHER METAL NITRIDES

G.V. Naik, J. Kim and A. Boltasseva, Optical Mater. Exp. 1 (2011) 1090

COMPARISON WITH SILVER/GOLD

TaN, HfN, ZrN also exhibit metallic properties in the visible!

G.V. Naik, J. Kim and A. Boltasseva, Optical Mater. Exp. 1 (2011) 1090

SPP ON TIN FILM

- Dielectric gratings are used to couple SPPs
- Electron-beam resist is patterned into gratings on top of 25 nm thin TiN film
- Angular reflectance shows dip at angles corresponding to excitation of SPPs

SPPs ON TIN FILM

OUTLINE

- Introduction: Challenges with Gold and Silver
- Material Requirements: Plasmonics & Metamaterials
- Alternative Materials?
- Transparent Conducting Oxides
- Transition Metal Nitrides
- Figures of Merit
- What is the Right Choice?
- Outlook

QUALITY FACTORS

- Im(ε) = ε" is a necessary indicator of performance but
- Re(ε) = ε' is also important in quantifying the overall material quality in devices

Metrics/Figures-of-Merit/Quality Factors

are to be estimated for each

- Material
- Application
- Wavelength range...

QUALITY FACTOR FOR SP

LSPR and SPR systems: Local-field enhancement

Q_{LSPR} = (Enhanced local-field)/(Incident field) (depends on the shape)

$$Q_{\rm LSPR}(\omega) = \frac{-\varepsilon'(\omega)}{\varepsilon''(\omega)} \qquad (sphere)$$

COMPARISON: LSPR

LSPR field enhancement for spherical nanoparticles in air

LSPR occurs at $\varepsilon_{metal}' = -2\varepsilon_{dielectric}$ (dipolar):

- Cannot be satisfied in Ag and Au in NIR
- Need other geometries (core-shells): more challenging to fabricate
- TCOs produce strong LSPR in the near and farther IR

COMPARISON: LSPR

- Field enhancement of metal nanospheres at the surface calculated using Mie theory
- ZrN and TiN nanospheres: Field enhancement comparable to that of Au
- TiN has good performance over broadband in the visible and near-IR

near field intensity enhancement

U. Guler *et al.*, Appl. Phys. B , DOI:10.1007/s00340-012-4955-3

HYPERBOLIC METAMATERIALS

Extremely anisotropic materials

- Extremely large effective index
- Extremely high photonic density of states

Applications

- Quantum optics with metamaterials
- Tailor mechanical, thermal and electromagnetic properties for interesting physics and devices

Designing a material which is metallic in one direction but dielectric in the another

D.R. Smith and D. Schurig, Phys. Rev. Lett. **90** (2003); V.A. Podolskiy and E.E.Narimanov, Phys. Rev. B **71** (2005); <u>C. L. Cortes et al., arXiv:1204.5529v1 (2012); E.E. Narimanov and I.I. Smolyaninov, arXiv:1109.5444v1 (2011).</u>

HYPERBOLIC METAMATERIALS

A metamaterial has hyperbolic dispersion relation

Hyperbolic dispersion

 $\epsilon_{x,y} > 0$; $\epsilon_z < 0$ Transverse positive

 $\epsilon_{x,y} < 0$; $\epsilon_z > 0$ Transverse negative

C. L. Cortes et al., arXiv:1204.5529v1 (2012) (Z. Jacob group)

NEGATIVE REFRACTION IN HMMs

- Only transverse-positive HMM can exhibit negative refraction.
- Only transverse-positive HMM produces measurable transmission.
- Only transverse-positive HMM can produce hyperlensing.
- Figure-of-merit¹: Re{β_z}/ Im{β_z}

¹A. Hoffman et. al, Nature Materials **6** (2007);

 $\epsilon_{x,y} > 0$; $\epsilon_z < 0$ Transverse positive

Z. Jacob and V.M. Shalaev, Science 334 (2011)

D. R. Smith et al., JOSA:B 21 (2004); A. Salandrino, N. Engheta, Phys. Rev. B 74 (2006);

HMM PERFORMANCE: TCOs / NITRIDES

Polycrystalline AZO/ZnO, single crystal AZO/ZnO, Au/Al₂O₃ and Ag/Al₂O₃ AZO/ZnO - Figure-of-Merit of 11 at 1.8 μ m

G.V. Naik and A. Boltasseva, SPIE Newsroom (2012) G.V. Naik and A. Boltasseva, *Metamaterials* 5 (2011) 1-7

A. Hoffmann et al., Nat. Mater. 6 (2007) 946

NEGATIVE REFRACTION EXPERIMENT

G.V. Naik, J. Liu, A.V. Kildishev, V.M. Shalaev and A. Boltasseva, Proc. Natl. Acad. Sci. (2012)

OUTLINE

- Introduction: Challenges with Gold and Silver
- Material Requirements: Plasmonics & Metamaterials
- Alternative Materials?
- Transparent Conducting Oxides
- Transition Metal Nitrides
- Figures of Merit
- What is the Right Choice?
- Outlook

WHAT IS THE BEST MATERIAL FOR...

Applications

LSPR, SPPs & Waveguides, NIMs, TO, ENZ...

Materials

Noble Metals, Metal Nitrides, TCOs, Noble Alkali Alloys, Alkali Metals, Graphene, Other Metals...

What is the Best Plasmonic Material For...

	LSPR	SPPs & Waveguides	NIMs	то	ENZ	Switchable MMs
Noble Metals	~	~	 Image: A second s	×	×	×
Transition Metal Nitrides	×	~	×	√	x	×
TCOs	<i>s</i>	×	×	1	s	s de la constante de la consta
Intermetallics	×	×	×	1	1	×
Alkali Metals	1	1	1	×	×	×
Graphene	×	×	×	×	×	1
Other Metals	×	×	×	×	×	×

MATERIAL CHOICES: OUTLOOK

- Infrared:
 - Silicides, Germanides, GaAs, SiC
- Near-infrared:
 - TCOs: AZO, GZO, ITO
 - Perovskites: Heavily doped barium tin oxide, strontium titanate, cadmium tellurium oxide, calcium titanate, strontium tin oxide
 - Tune plasma frequency by doping
 - Great switching opportunities
- Visible:
 - Intermetallics: Silicides, Germanides, Nitrides...
 - Titanium nitride, tantalum nitride

SUMMARY

- There is not a single choice for the best low-loss plasmonic material for all applications and all wavelength
- At 1.5-μm TCOs (AZO, ITO, GZO) may be the best materials for TO devices and NIR applications providing low loss and not that negative ε'
- At visible range intermetallics and ceramics hold a promise
- Demonstration of efficacy of new materials in various devices
- New materials enable realization of new physical phenomena such as ENZ properties

PLASMONIC MATERIALS RESEARCH

- Laser & Photonics Reviews 4, 795–808 (2010)
- Phys. Status Solidi RRL 4, 295–297 (2010)
- Metamaterials 5, 1–7 (2011)
- Science 331, 290 (2011)
- Optical Materials Express 1 (6), 1090–1099 (2011) MM and Plasmonics Focus Issue, Invited
- Optical Materials Express 2 (4), 478-489 (2012)
 Highlighted article
- Proc. Natl. Acad. Sci. (2012)

Nature Photonics News&Views Highlight

news & views

VIEW FROM... NANOMETA 2011

In search of new materials

NATURE PHOTONICS | VOL 5 | MARCH 2011

MATERIALS SCIENCE

Low-Loss Plasmonic Metamaterials

21 JANUARY 2011 VOL 331 SCIENCE

TEAM and SUPPORT

Students

- Gururaj Naik
- Jongbum Kim
- Paul West
- Naresh Emani

Collaborations

- Prof. T. Sands (Purdue)
- Prof. V. Shalaev (Purdue)
- Dr. A. Kildishev (Purdue)

3 Silver 2.5 E" Material Losses AZO 2 GZO 1.5 1 0.5 0 800 1000 1200 1400 1600 1800 2000 Wavelength (nm)

Support

• ONR-MURI, ARO

